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Abstract-  An  algorithm  is  presented  to  update  the 
multi-fractal spectrum of a time series in constant time 
when new data arrives. The discrete wavelet transform 
(DWT) of the time series is first updated for the new 
data value. This is done optimally in terms of sharing 
previous computations, in O(L) constant time, with L 
the  number  of  levels  of  decomposition.  The  multi-
fractal spectrum is then updated also in constant-time. 
New  pre-computation  techniques  are  presented  to 
further  accelerate  this  process.  All  possible  2L data 
alignments are taken into account in the course of the 
incremental updates.  The resulting spectrum estimate 
is more stable, compared to the current DWT method 
using  only  one  dyadic  frame,  as  precise,  and  more 
efficient. It is adapted for real-time on-line updates of 
the time series.

1 Introduction

The aim of this study is to improve on a previous multi-
fractal  analysis  method so as  to  apply this  technique  in 
real-time. Precise multi-fractal analysis algorithms can be 
time  consuming  [1].  Faster  techniques  using  wavelet 
transforms were developed [2], sometimes at the expense 
of precision [3].  Additionally,  the non-stationarity of the 
time  series  considered  leads  to  further  refinements  [4]. 
Among  the  latest  developments,  P.  Manimaran  et  al 
propose using discrete wavelet transforms  to estimate the 
scaling properties of a time series [5]. The present work 
consists  in  extending  this  technique  so  as  to  make  it 
applicable  incrementally,  for  dynamic  time  series  were 
new  data  are  appended  in  real-time,  with  additional 
stability and very good performance.

The  next  section  introduces  an  incremental  DWT 
implementation  that  makes  use  of  the  locality  of  this 
transformation and previous computations, so as to achieve 
an O(L) constant-time update as new data arrives. Section 
3 describes how to make use of this algorithm to update a 
multi-fractal  analysis  also  in  constant-time.  Details  are 
provided  for  the  different  parts  of  the  multi-fractal 
spectrum estimation.  Several  optional  improvements  are 
also presented. Comparison and experiments are provided 
in section 4, with comments and guidelines how to use this 
algorithm  in  practice.  Section  5  concludes  on  this 
presentation.

2 Incremental DWT updates

2.1 Presentation of the algorithm

Discrete  wavelet  transform can  be  seen as  a  successive 
removal  of  details  from  the  data,  each  step  removing 
details at a given scale. The smoothed-down versions of 
the data are obtained by applying an averaging (low-pass) 
filter  recursively.  The  details  for  each  level  of 
decomposition  are  obtained  by  applying  the 
complementary  (high  pass)  filter  to  the  previous  level 
averaged  version,  starting  with  the  initial  data. 
Reconstruction is achieved by the reverse process: adding 
the  missing  details  to  each  smoothed-down  level  of 
decomposition  to  restore  the  previous  level,  until  the 
original data is reconstructed. This is only a simple way to 
view the effect of the operations practiced on the data. It 
does not pretend to be complete; it's a short summary for 
the needs of this presentation.  More information can be 
found  in  the  literature  on  wavelet  transforms  (see  for 
example [6] for pointers). The main point for this study is 
to emphasize:

• The recursive nature of the transform. This was 
presented in the previous paragraph.

• The  local  nature  of  the  transform.  Each  filter 
usually having finite length, only the surrounding 
data of a given point is necessary to obtain the 
DWT.

Figure 1 is a representation of the levels of decomposition. 
Each level  average has a spacial resolution of twice the 
previous level average: the missing half of the information 

Level 2 averages: size=4  (the 4 details are not shown)

x0→15

Level 1 averages: size=8  (the 8 details are not shown)

x0→5 x2→7 x4→9 x6→11 x8→13 x10→15

Original data: size = 16

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

This  figure  shows  the  general  form  of  the  levels  of 
decomposition. A low-pass filter of length 6 was applied 
to the data. Only the averaged data is represented. The 
full level of decomposition corresponds to the results of 
both filters: high-pass (details) and low-pass (averages). 
The high pass data has an identical structure. 
Indices  in  the  levels  1  and  2  indicate  which  of  the 
original  data  were  used  to  build  this  particular 
smoothed-down  average.  Grayed  cells  corresponds  to 
the data that would be necessary for the reconstruction 
of X14 and X15 (in addition to the corresponding details).
Figure 1: Smoothed-down levels of decomposition



is contained in the details, not represented in this diagram. 
2 original data are necessary to produce one average (with 
doubled spacial resolution) and one detail.

For  a  dynamic  time  series,  where  new  values  are 
appended as they become available, there is no preferred 
way of pairing the elements for building level 1. Figure 1 
shows a pairing starting with even elements, but Figure 2 
shows both alternative pairings.

When X16 arrives, it can be paired immediately with X15 in 
the odd pairing scheme to produce X11→16. This allows to 
re-use the odd level 1 up to X9→14 without recomputation. 
Similarly,  when X17 arrives,  switching back to  the  even 
pairing scheme allows to take it into account: a new point 
is added to the even level 1. Recursively, by keeping all 2λ 

frames for  each  level  λ,  a  new point  can be  taken into 
account immediately. 

Since the spacial resolution decreases exponentially at 
each  level,  keeping  all  2λ frames  gives  back  a  linear 
memory  requirement,  not  an  exponential  one.  O(2LN) 
memory is  necessary to  store  all  the  alternative  frames, 
with L levels of decomposition, for N data points. Figure 3 
sketches how this memory is used. Section 2.2 gives more 
information,  and  why  much  less  than  2LN  is  actually 
sufficient in practice.

The incremental DWT update algorithm consists in the 
following steps:

1. Switch the next level to its alternative frame.
2. Compute the new average and detail for the next 

level using the new data point.
3. Recurse, using the new average as a new data for 

the next level.
Using cyclic buffers allows to simultaneously remove the 
older  points  without  copy,  as  new  data  is  added.  This 

algorithm is  very  efficient,  requiring  only  O(L)  wavelet 
filter  convolutions per update,  independently of the data 
size  N.  After  the  update,  the  current  set  of  level  parity 
buffers holds the complete, up to date, decomposition. 

An  alternative  way  to  look  at  this  algorithm  is  to 
consider  that  all  2L possible  dyadic  data  frames  are 
processed simultaneously. The structure presented in figure 
3  corresponds  to  sharing  all  common  computations 
between any 2 given frames.  Conversely,  a  given parity 
buffer at level λ is shared by 2L-λ frames.

2.2 Practical considerations

Figure 1 shows the data necessary for the decomposition 
and reconstruction of particular higher level averages. As 
is  expected  in  any  frequency  decomposition,  low 
frequency components (corresponding to higher levels in 
the DWT) cannot be computed immediately.  For wavelet 
decompositions applied to static data, like images, one can 
cope with this problem by considering the data periodic, or 
using constant padding at the ends, for example. Care must 
then be taken in the interpretation, as the data extension 
technique  like  roundup  or  padding  may  introduce  non-
negligible spurious frequencies. For a dynamic time series, 
such techniques are even less adequate. 

When  combined  with  the  multi-fractal  formalism, 
where  discontinuities  are  measured,  any  erroneous 
frequency is simply not  acceptable.  In their  presentation 
[5], P. Manimaran et al. compute the decompositions using 
constant  paddings,  but  then  discard  the  spurious 
coefficients before proceeding to the multi-fractal analysis. 
While  this  works for  a  static  one-time analysis  of  data, 
computing and discarding coefficients is not acceptable for 
the real-time analysis of dynamic time series.

The  solution  is  to  accept  the  inevitable  delay  in 
capturing the low frequencies, and only compute the multi-
fractal  spectrum  over  the  range  of  data  that  can  be 
perfectly reconstructed. As is shown in Figure 1, for a filter 
of length w1, there are (w-2) data that cannot be taken into 
account  to  compute  the  next  level,  for  each  level. 
Similarly,  (w-2)  data  can't  be  reconstructed  from  the 
previous level. If the highest level L of decomposition is to 
hold nL data, enough to make significant statistics, then:

• (2L-1)(w-2)  is  the  aforementioned  delay  to 
capture  the  low  frequencies.  This  is  also  the 
number of oldest data that can't be reconstructed.

• N  =  2L nL +  (2L-1)(w-2)  data  is  necessary  to 
compute nL highest level coefficients.

• Only the most recent R = 2L nL - (2L-1)(w-2) out 
of N data is actually reconstructible.

All 3 parameters nL, L, and w, are used here to compute the 
necessary buffer size N. This contrasts with other methods 
considering buffers of size 2L  exactly, in which the edge 
problem  requires  careful  attention.  For  this  algorithm, 
higher  levels  hold  only  the  necessary  data  for 
reconstruction. This explains why less than 2LN memory 
is actually needed in section 2.1.

As aforementioned, further processing using the DWT 
to compute the multi-fractal spectrum is applied only to the 
R data that can be reconstructed.

1 This  text  assumes the reconstruction and analyzing 
wavelet filters have the same length for simplicity.

Level 1 with an even pairing

x0→5 x2→7 x4→9 x6→11 x8→13 x10→15

Original data

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16

Level 1 with an odd pairing

x1→6 x3→8 x5→10 x7→12 x9→14 x11→16

A new point X16 arrives. It cannot be paired with X15 in 
the  current  even  pairing  scheme.  However,  using  the 
alternative odd pairing,  X16 can be taken into account 
immediately.

Figure 2: Smoothed-down levels of decomposition

Level 2 averages, size = 4 for each of the 4 frames

even / even even / odd odd / even odd / odd

Level 1 averages, size = 8 for each of the 2 frames

even frame odd frame

Original data: size = 16

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

Details  have  the  same  structure  as  the  averages. 
Counting  both  details  and  averages,  the  memory 
necessary to hold all the alternative frames is O(2LN). 
Another N would be needed to store the data itself.

Figure 3: Frames of decomposition



3 Constant-time update of the multi-fractal 
analysis

3.1 Presentation of the computation of the multi-
fractal spectrum from the DWT

The method used in this study is based on [5]. It has been 
made incremental, and improved by sharing computations 
between updates, using a similar technique as presented in 
the  previous  part  of  this  article.  This  section  is  a  short 
summary  of  the  spectrum  estimation  described  in  [5], 
which will serve as the basis for the algorithm that will be 
presented  in  the  next  section,  together  with  additional 
improvements.

The first step is to extract the fluctuations of the data at 
a given scale from the DWT. To do this, a reconstruction 
D(λ) is done without the details up to the desired level  λ, 
and the result of that reconstruction is subtracted from the 
original data D(0). What remains therefore consists in the 
original  data  minus  its  average  up  to  level  λ.  This 
corresponds to the fluctuations F(λ) of the data, at the scale 
s=2λ corresponding to  the  level  λ.  Note  that  F(λ)=D(λ)-
D(0) is  a  vector  of  size  at  most  the  number  of 
reconstructible  data  up to  level  λ.  For  consistency,  F  is 
considered  here  only  on  the  R  data  that  can  be 
reconstructed up to the maximum level (see section 2.2).

Once  the  fluctuations  are  extracted,  it  is  possible  to 
check whether their exponents exhibit a power-law scaling. 
The q-exponent average of F(λ) is defined as:

f   , q = 1 
R ∑

k=1

R

∣F   k∣
q 

1 
q

Eq. 1

There are L values of f(λ,q). For each q, the h(q) exponent 
of  the  multi-fractal  spectrum can  be  extracted  from the 
power-law scaling of the f(λ,q), provided such a scaling is 
observed.  In  practice,  estimating  h(q)  amounts  to  an 
exponential data fitting between f(λ,q) and sh(q) using these 
L values. This fitting will be described in section 3.3.

3.2 Incremental version

The algorithm presented in the previous section represents 
global statistics on all the data. This is one of the major 
interest  of  multi-fractal  analysis:  it  summarize  in  a  few 
values the behavior of the whole series. The goal is now to 
update these statistics efficiently as new data is presented.

The first step is to update the values of f(λ,q), which 
amounts to updating the F(λ) vector and the power sums:

p , q =∑
k=1

R

∣F k∣
q Eq. 2

Unfortunately,  adding  a  new point  to  the  time series 
modifies the current decomposition frame, as described in 
section  2.1.  Reconstruction  of  the  data  is  therefore 
changed: The F(λ)k values for the series with the new point 
cannot be deduced from the previous F(λ)k values of the 
series before adding the new point. A naive algorithm that 
would  add  the  reconstruction  for  the  last  point  to  the 
power sum in Eq. 2 is not satisfying because it would mix 
inconsistent terms from different frames.

The  proposed  solution  consists  in  maintaining  the 
power sums for each of the 2L dyadic frames, and share the 
common computations between any 2 given frames, as for 

the DWT updates. Each level parity buffer in the structure 
introduced  by  figure  3  has  now  an  additional  field 
corresponding to the p(λ,q)  values  for  that  buffer  parity 
assignment.  As before,  the  p(λ,q)  values  for  a  buffer  at 
level λ are shared by 2L-λ frames.

At this point, the next step is to update the power sums 
corresponding  to  the  current  decomposition.  Figure  4 
shows an example of power sum update for the first level.

3.3 Updating the fluctuations

The direct application of the definition of the fluctuations 
F(λ) implies the reconstruction without details  of all  the 
levels below the current level λ, and this has to be done for 
each of the L levels. While this would be a constant-time 
operation, there is another and faster way to compute the 
fluctuations for the 2λ data points involved in the update of 
F(λ).

Indeed,  a  wavelet  filter  convolution  is  a  linear 
combinations of data values. So are then compositions of 
wavelet  filters.  In  particular,  the  reconstruction  D(λ) 
without  details  up  to  level  λ  is  a  linear  combination  of 
coefficients at level λ, since all details of lower levels are 
removed  by  definition.  Since  D(λ-1)  and  D(λ)  are 
reconstructions  without  details  up  to  levels  λ-1  and  λ 
respectively,  then  the  details  at  level  λ contain  all  the 
information for their difference. The same is also true for 
F(λ) = D(λ) - D(0) and F(λ-1) = D(λ-1) - D(0).

Therefore,  it  is  possible  to  find a  formula  that  gives 
F(λ) in terms of F(λ-1) plus a linear combination (a filter) 
of the details d at level λ:

F  =F  −1 ∑
k=0

m−1

 k d k i
Eq. 3

In Eq 3, the unknown parameters are m, the filter length, i, 
the index of the first detail d to apply the filter to, and the 
filter  coefficients  α.  All  these  parameters  can  be  pre-
computed  by  careful  examination  of  the  reconstruction 
process. 

The grayed cells in Figure 1 show reconstruction filters 
of length 4 for level 2, length 3 for level 1, and that are 
applicable  to  the  data  at  position  14  and  15.  Note  that 
X10→15 in level 1 is odd-indexed, and X8→13 could also be 
computed  from  the  same  details  of  level  2,  but  with 
different  α. Actually, there are exactly 2λ different filters 
for  each level  λ:  Data  that  are  2λ apart  share  the  same 
parity assignments up to level λ.

Level 1 for the same parity pairing as the new data

x0→5 x2→7 x4→9 x6→11 x8→13 x10→15

Original data: X14 and X15 are new in this parity pairing

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

When  new  data  X14 and  X15 is  added,  after  2  frame 
switches,  the  first  level  frame  is  the  same.  Grayed 
background  values  are  those  already  included  in  the 
power sum p(1,q) for the even parity buffer: they could 
be  reconstructed  with  the  available  data  before  the 
update (thick borders indicate the most recent data that 
could be  reconstructed).  After  the new data is added, 
p(1,q) can be updated with the fluctuations for X10 and 
X11, thanks to X10→15 which is now available.

Figure 4: Data involved in a power sums update



The algorithm to find α, i, and m for each of the 2λ data 
index is as follow:

• Pair the data using the current parity assignment. 
This gives imin(0) and imax(0), for example 14 and 
15 in the previous example. This will also give 2 
out of the 2λ filters.

• Recursively compute imin(λ+1) = floor(imin(λ)/2) – 
w/2 + 1 and imax(λ+1) = floor(imax(λ)/2), with floor 
the round-down operation and w the size of the 
wavelet reconstruction filter as in section 2.2.

• This gives m = imax - imin +1 for these specific data 
index and level.

• Set the detail dk+i_min to 1 and all other details to 0. 
Thanks  to  the  linear  nature  of  wavelet 
convolutions, reconstructing down to level 0 (the 
original data level) gives the 2 coefficients αk for 
the  2  filters  corresponding  to  the  initial  index 
imin(0) and imax(0).

• Repeat the previous step for all k=0..m-1 to get 
the  full  filters  for  level  λ  at  the  chosen  data 
positions.

• Loop from the first step for all 2λ data positions.
• Repeat the whole procedure for all levels λ=1..L.

This pre-computation is only dependent on a given wavelet 
and number of levels. It can be shared amongst analyzers 
processing  different  time  series,  for  example.  Once 
available,  the  filters  can be  used  directly  in  Eq.  3.  The 
power sums can now be updated in a much more efficient 
way.

Starting from level 0 (the original data), an array of size 
2L values is initialized to 0. This array will contain the F(λ) 
values,  as shown in Figure 5.  It  is  passed from level  to 
level,  and updated according to Eq. 3.  At this point, the 
previous 2L-2λ values of  F(λ) could be stored in memory 
and re-used, as for the power sums, or recomputed. This 
choice  largely  depends  on  the  application:  the  memory 
requirement to store past values is 2L-2λ for each of the 2λ 

parity buffers of a given level, which adds up very quickly. 
Whereas  recomputing the  2L-2λ values  directly from the 
data thanks to the filters is  fast,  though not as fast as a 
copying past  computations.  Either way is  faster than the 
reconstruction down to data level suggested by the direct 
application of the F(λ) definition.

Each level then computes only the 2λ last values of |F(λ)|q 

in  order  to  update  the  power  sums (the  grayed  cells  in 
Figure  5).  The  first  2L-2λ values  of  F(λ)  are  not 
exponentiated, they are just needed to build further levels 
up.

3.4 Taking care of old data

Up to this point only new data was considered, but older 
values  should  also  be  removed.  Unfortunately,  it  is  not 
possible  to  recompute  the  past  |F(λ)|q values,  since  the 
corresponding data was precisely discarded in the cyclic 
buffers. For stationary series a solution would be to make 
statistics from the first point of the time series and ignore 
the  problem.  Without  this  assumption,  the  older  points 
should be removed. 

The solution is to compute the 2λ first F(λ) values just 
before updating the DWT with the new data, and remove 
these from the corresponding power sums. After a whole 
cycle  of  the  2λ frames,  the  same  parity  alignment  is 
reached again for the parity buffers at level λ. The power 
sum is ready to be updated with the new data, without the 
old points. The algorithm now looks like:

• Compute  the  2λ first  values  of  |F(λ)|q for  the 
current frame and associated set of parity buffers, 
for each level λ. This is done with the current data 
and the adequate filters according to Eq 3.

• Prepare the power sums of the current frame for a 
future update by removing these old values.

• Update  the  DWT incrementally  as  described  in 
section  2.  This  changes  the  current  frame  and 
parity buffers.

• Compute the 2λ last values of |F(λ)|q for the new 
current  frame. Update the power sums with the 
new data.

At the end of these steps, the power sums of Eq. 2 always 
have an up to date value. The multi-fractal spectrum can 
now be derived.

3.5 Spectrum computation

As mentioned in section 3.1, the h(q) exponents for multi-
fractal analysis are estimated from the power-law scaling 
of the f(λ,q) values. For each scale s=2λ, the goal is to find 
the best h(q) that fits:

f  , q∝ sh q  Eq. 4
with / meaning “proportional to”. Eq 4. can be rewritten:

log2 f  , q ≈h q ⋅C1

log2 p , q ≈hq⋅qC2 Eq. 5

with C1 a constant independent of  λ, and C2=qC1+log2R 
according to Eq 2 and 3, so C2 is also independent of λ.

The  simplest  way  of  proceeding  consists  in  a  least 
square  estimation  for  h(q)  using  the  L  power  sum 
logarithms. But for exponential fitting this would introduce 
a bias: lower scales would be given a higher importance 
than higher scales in the estimation. Weighted least square 
fitting allows to restore the relative influence of each scale 
by choosing adequate weights. A better way to estimate the 
h(q) values is thus to minimize:

F(4), assuming X15 is the latest reconstructible data.

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15
F(3), assuming X15 is the latest reconstructible data.

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15
F(2), assuming X15 is the latest reconstructible data.

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15
F(1), assuming X15 is the latest reconstructible data.

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15
After new data has added, let's suppose that X15 is the 
latest reconstructible data. In order to update the power 
sums in each level λ, the grayed background F(λ) values 
have  to  be  computed.  The  white  background  values 
could  either  be  recomputed  or  reused  from  past 
updates, depending on the application requirements.

Figure 5: Updating the F(λ) values



∑
=1

L

w  log 2 p  , q −hq⋅qC2
2

Eq. 6

The reader is invited to consult [7] for example, for the 
derivation of the weighted least square estimate solution. 
When rewriting that solution with the parameters of Eq. 6, 
the h(q) are given in analytical form by:

hq=
1 
q
∑
=1

L

 log2 p , q Eq. 7

with:

k=
wk k∑=1

L

w−∑
=1

L

w 
∑
=1

L

w⋅∑
=1

L

w
2−∑=1

L

w 
2

Eq. 8

The  unweighted  least  square  fitting  corresponds  to  all 
weights wλ being equal.

The  solution  given  by  Eq.  7  and  Eq.  8  has  been 
rewritten in such a way as to clearly exhibit a μλ term: this 
way,  μλ deliberately appears as a weight in Eq. 7 . Using 
Eq. 8 it is possible to pre-compute μλ / q for each q, λ. All 
there  is  to  do  in  real-time  is  then  to  add  the  weighted 
logarithms as in Eq. 7, which can be done very efficiently2.

The question is now to find proper weights so all scales 
are given approximately equal influence. This is achieved 
by using an exponential  relation for  the weights,  ideally 
proportional to the fittest exponential itself. For the fitting 
of y=A∙2Bx,  one choice  [7] could to use the y values as 
weights:  they  are  supposedly  close  to  the  fittest 
exponential3. Unfortunately, for a fast computation of the 
h(q),  it  is  imperative  that  the  μλ do  not  depend  on  the 
power sums, otherwise their pre-computation would not be 
possible.

What  is  proposed  in  this  algorithm is  to  choose  an 
exponential scale that corresponds to a classical brownian 
motion:  integrated  white  noise  [8],  a  mono-fractal  with 
Hurst exponent 0.5. Without any a priori knowledge on the 
data (hence without y values), no guess can be made about 
long term dependence of the data on previous values. With 
H=0.5, no assumption is made on persistence (H>0.5) or 
anti-persistence (H<0.5)  [9].  On the one hand,  this  isn't 
nearly  as  good  as  the  y  values  weighting  scheme 
aforementioned. On the other hand, this is an exponential 
scale that gives better results than an unweighted scheme 
at no cost, since it allows pre-computations. The proposed 
weights are thus given by:

w=s0.5=2 Eq. 9

2 By chance, personal computers (amongst others) with 
the  x86  instruction  set  (x87  FPU)  can  process 
“y∙log2x” in a single assembly instruction. This can be 
used to compute Eq 7 very efficiently.

3 There  are  still  problems  with  this  approach:  a 
spurious  y  value  used  as  weight  would  precisely 
enhance the relative influence of this spurious point. 
An iterative solution may be to use a first exponential 
estimate  to build  a  new set  of  weights,  and so  on, 
until  convergence.  But  this  would be too expensive 
computationally for this algorithm, and not justified in 
regards of the weight experiment results, section 4.2.

Depending on the user application, other choices may be 
more  adequate.  Many  natural  phenomena  exhibit  “pink 
noise”  [10]:  power-law  scaling  proportional  to  the 
frequency  inverse.  Integrated  pink  noise  has  a  Hurst 
exponent  of  1.0.  A  choice  of  wλ=2λ may  be  more 
appropriate  for  such  occasions.  The  proposed  publicly 
available implementation of this algorithm (see Appendix 
1)  default  to  Eq  9,  but  accepts  user-defined  weights  as 
optional parameters.

The power-sum updating routine presented in 3.2 now 
includes  an  additional  step.  As  the  p(λ,q)  values  are 
updated, so are the h(q): the weighed logarithm of p(λ,q) is 
added for each level. When the highest level is reached, 
the new h(q) are ready.

This completes the incremental multi-fractal algorithm 
presentation. The DWT was updated for the new data, re-
using previous computations from the same dyadic frame. 
The power sums were updated quickly, thanks to a filter 
that allows direct computation of the F(λ) from the data. 
Finally, a fast method was given to obtain an estimate of 
the  h(q)  from  the  power  sums,  by  pre-computing  the 
factors for a weighted exponential fit.

3.6 Optional context-dependent improvements

So far, each of the 2L frames have their own power series 
and h(q) estimates. Data is shared optimally amongst the 
different frames, but the final power sums p(λ,q) are still 
nonetheless maintained for each level parity buffer. 

An optional improvement may thus be to average the 
h(q)  values over  all  2L latest  frames. For direct  average 
computations,  all  there  is  to  do  is  dividing  each  pre-
computed μλ by 2L (see Eq 7). This way, the new h(q)/2L is 
obtained without modification to the previous algorithm. 
Updating the average is immediate. A 2L history of h(q)/2L 

is maintained for each q. As a new h(q)/2L is computed, it 
is added to the average and the history. The oldest h(q)/2L 

is  removed  from  the  history  and  subtracted  from  the 
average. 

The  advantage  of  averaging over  the 2L frames is  to 
reduce the frame to frame variations in the estimates (see 
experiment  section  4.2).  For  stationary  time  series 
especially, this brings more stable and reliable results.

The  drawback is  the dilution  of  the influence  of  the 
newest  data  point.  For  non-stationary  time  series, 
averaging over 2L frames enlarges the number of data the 
latest estimate is based on by 2L-1. However, depending on 
the context, the benefits of having estimates less sensitive 
to frame to frame variations may out-weight this drawback. 
The public implementation provided with this article (see 
Appendix 1) considers averaging as an optional operation 
that is active by default, but can be deactivated depending 
on the user application.

Another  optional  improvement  for  stationary  series 
concerns the possibility of keeping all points in the power 
sums, instead of removing the old ones (with the additional 
benefit  of  reduced  computation  time).  This  is  an 
improvement only for stationary time series, where more 
data means better estimates. However, this is not desirable 
for non-stationary series, where older points have different 
properties than the newer ones.  Hence this possibility is 
also kept as an option, unset by default, in the proposed 
implementation aforementioned.



4 Experiments

4.1 Numerical stability

One potential source of numerical roundup errors lies in 
the incremental update of the power sums (Eq 2). When 
adding a large number of values, while subtracting older 
ones at the same time, floating point operations may cause 
a drift in the numerical result vs the analytical one. The 
final values obtained with this incremental algorithm may 
therefore be different from the non-incremental version.

To investigate this effect, a non-incremental version of 
the  algorithm  is  also  provided.  This  non-incremental 
version was also developed for the initialization phase of 
the incremental algorithm, so as to provide the first power 
sums.  The  alternative  would  be  to  give  h(q)  estimates 
during the initialization phase with only the first levels of 
decomposition, so long as there is not enough data. Since 
this would require the computation of adequate μλ weights 
for  the  initialization phase,  a  non-incremental  call  when 
enough data is available was preferred.

Thanks to the non-incremental version, it is possible to 
measure  the  floating  point  drift  induced  by  Eq  2.  An 
experiment was set up to monitor the average number of 
iterations  necessary  to  notice  a  10-6 error  in  the  h(q) 
estimates between the incremental and the non-incremental 
version. In practice, the time it takes to notice a difference 
depends on the time series values. Statistics are made on 
30 independent runs to quantify the deviation and derive 
the error bars if needed.

This experiment is set up using Brownian motion with 
H=0.5. It is reproducible as a test program coming with the 
source code. An analyzer with 5 levels, q exponents from 
-10 to +10, and 30 points at the highest scale was used on 
the random source. No averaging is done on consecutive 
frames, and past data are discarded: Averaging over the 2L 

frames would reduce the influence of an imprecision on 
one  of  the  parity-aligned  independent  power  sums. 
Removing past data causes twice as many changed terms 
per update, compared to just adding the new values.

The results are that even after 10 million updates, no 
drift  was  found  at  10-6 precision  for  all  positive  q 
exponents, and for q=-1, in any of the independent runs. 
q=-2 exhibits a 10-6 difference after the order of a hundred 
thousand updates (with a large standard deviation of  70 
thousand steps). Nevertheless, no drift above 1.5∙10-4 was 
observed after the 10 million updates in each of the runs 
for q=-2. Larger negative q exponents are more sensitive. 
The largest negative q diverge at 10-6 after a few thousand 
iterations only, and may exhibit drifts the order of 10-1 or 
10-2 after  the  10  million  updates.  However,  the  largest 
negative q are also the most unreliable ones in the base 
version of the wavelet transform.

Given that the inherent precision of a wavelet transform 
analysis is seldom below 10-3 for positive q anyway (see 
next section), less precise for negative q, and given that it 
would take at least more than 10 million updates to see a 
numerical drift above that inherent precision: it is safe to 
assume  that  the  incremental  algorithm  is  sufficiently 
numerically  stable  for  most  uses,  compared  to  the  non-
incremental one.

4.2 Precision

The goal of this section is to measure the effect of the new 
options brought by this algorithm: influence of keeping or 
discarding old points and of the number nL of data at the 
highest  scale,  influence  of  the  weighting  scheme,  and 
influence of averaging over the 2L frames. The precision 
inherent to the discrete wavelet transform method, as well 
as  the  influence  of  parameters  like  the  choice  of  the 
wavelet, were already discussed in [5].

Experiments were done using the Daubechies Wavelet 
with  6  coefficients.  A  mono-fractal  Brownian  motion 
random source with theoretical H=0.5, and an integrated 
pink noise with H=1.0,  are both investigated.  The white 
noise is generated using the Mersenne Twister algorithm 
[11]  and  the  pink  noise  is  generated  by  the  Voss  - 
McCartney  algorithm  (see  Appendix  1).  All  these 
implementations are provided with the source code so the 
experiments are easily reproducible.

Each experiment was done with the correct weighting 
scheme  respectively  corresponding  to  the  theoretical 
H=0.5 and H=1.0: this avoids the exponential data fit bias 
toward  small  scales  explained  in  Section  3.3.  The 
experiments  were  then  repeated  with  basic  least  square 
fitting,  with  all  weights  equal  to  1.0,  for  comparison. 
Overall  statistics are made on 30 independent runs.  The 
other effect that is investigated is the averaging of the h(q) 
over  the  2L frames.  Frame-to-frame  variations  are 
measured  within  each  run,  in  order  to  get  standard 
deviation from the frame average.

Results are given in Appendix 2.  Figure  7 shows the 
overall  precision  experiment  for  integrated  pink  noise, 
when keeping old values: statistics are made on the whole 
series, not just the latest data. 3 different configurations are 
selected, each corresponding to increased number of levels 
of decomposition. The results are insensitive to the number 
nL of  data  at  the highest level  since old values are kept 
(this was verified experimentally with nL=10,  30 and 50 
giving exactly the same results).

As expected, the overall precision increases with each 
configuration.  Even  the  low-quality  L=4  configuration 
produces  reasonable  results,  with  a  better  than  5.10-2 

precision on average,  for  a  theoretical  H=1.0.  However, 
the run-to-run standard deviation is too high for reliable 
estimates. On a given specific run, which is the case for 
on-line time series updating, the observed precision may 
fluctuate too much from the average, especially for large 
negative q values. With the medium L=7 configuration the 
precision is slightly increased, with less than 4.10-2 error 
on the whole spectrum. But more importantly, the run-to-
run variation is now acceptable. The higher-quality L=10 
configuration  further  improves  the  result,  though not  as 
much  as  the  L=7  one  did  over  the  L=4  configuration. 
Consequently,  there  is  little  interest  in  increasing  the 
number of levels above a threshold value, especially when 
considering  the  performance  cost  this  entails  (see  next 
section).

Figure 8 shows the effect of the weighting scheme, with 
the same setup. Once again the effect is more important for 
the low-precision configuration. For the medium and high 
ones, the gain is noticeable, though it remains just above 
the  precision  level  aforementioned.  Results  using  the 
Brownian motion with H=0.5 instead of the integrated pink 



noise with H=1.0 are even less sensitive to the weighting 
scheme.  This  implies  the  choice  of  the  weights  is  not 
crucial, and the default configuration of the weights should 
be  adapted  to  most  uses.  However,  since  this  algorithm 
implements  weighting  at  no  cost,  thanks  to  the  pre-
computation of the exponential fit coefficients, the correct 
weighting  scheme  might  as  well  be  used  whenever 
possible.

The third part of the precision experiment concerns the 
frame  to  frame  deviations.  Results  are  shown  for  the 
Brownian motion. The old points are discarded, and as a 
result  the  number  of  data  nL becomes  significant  (see 
figure  9). The frame averaged results are given first. The 
observed precision for L=7 and 10 is the same order as for 
the previously presented overall series statistics (with old 
points kept): precision the order of 3.10-2. For L=4, nL=10, 
the results are worse, but this is due to the low nL value: 
when  increasing  it  to  L=4,  nL=50,  another  experiment 
shows the average precision goes back to 6.10-2, which is 
comparable to the 5.10-2 in the whole series experiment.

The  run-to-run  deviations  are  not  shown:  they  are 
similar to the previous experiment (with the same note on 
the  unreliability  of  L=4).  Consequently,  provided  the 
number of data at the higher level nL is not too low, results 
are  comparable  to  the  whole  series  version.  This  seems 
logical,  as  the  series  keeps  the same properties  through 
time: discarding the old points has little effect so long as 
there  are  enough data  to  average  on.  For  a  series  with 
properties  changing  through  time,  removing  old  points 
would be necessary.

The frame-to-frame deviations  are  shown next  to  the 
frame averages. The low-quality L=4, nL=10 exhibits the 
worst variations, with unusable results. L=7, nL=30, gives 
stable frame to frame results for positive q, but unstable 
ones for negative q. L=10, nL=50 exhibits frame deviations 
below  the  precision  level.  Interestingly,  in  another 
experiment,  increasing  nL for  L=4  and  L=7  doesn't 
significantly improve the frame to frame variations, unlike 
the  run-to-run  variations.  Therefore,  whereas  frame 
averaging can be omitted for L=10 given these results, it is 
really  beneficial  to  medium-quality  configurations  by 
increasing the stability in the estimates.

4.3 Performance

The performance experiment concerns the relative speed 
of  the  incremental  algorithm  compared  to  the  non-
incremental one. The absolute timings and the relative gain 
of the incremental version are given for different number 
of data and number of levels. All computations are done 
with  the  Daubechies  wavelet  with  6  coefficients.  These 
experiments measure the time it  takes to update a multi-
fractal analysis by adding a new data value and removing 
an  old  one.  Timings  when  keeping  the  old  points  are 
slightly  above  half  these  results.  Absolute  timings  are 
dependent  on  a  specific  hardware  configuration,  so  2 
configurations are tested. Some optimizations like the pre-
computation  of  the  filter  (see  section  3.3)  and  of  the 
exponential  data  fit  (see section 3.5) benefit  to  both the 
incremental  and  the  non-incremental  versions  of  the 
algorithm. 

The  computation  time  is  independent  from  the  data 
values, but other effects introduce some variance: the OS 

multitasking,  different  branching  predictions  for  each 
update on the CPU, the resolution of the timer used for 
measurement, etc. In practice, it's necessary to average the 
experiments  over  large  a  number  of  updates.  Figure  6 
shows the result.

As  expected,  increasing  the  number  of  data  has  no 
significant effect on the incremental version timings (see 
the “I” rows in Figure  6). Consequently, the gain of the 
incremental  algorithm  over  the  non-incremental  one 
increases with the data size.  Similarly, the ratios depend 
much  more  on  the  algorithms  themselves  than  on  the 
machine speed.  This is  observed for  L=7 especially.  An 
unexpected result is the the influence of a faster machine 
on  the  ratios  for  large  number  of  data.  An explanation 
would probably be machine dependent, and the influence 
of  all  system  parameters  would  have  to  be  taken  into 
account (larger memory cache, data transfer time, etc).

The effect  of reducing the number of q-exponent has 
also been investigated. A detailed profiler analysis shows 
that the incremental algorithm spends only part of its time 
processing the |F(λ)|q exponentiations: there are only (nq-1) 
multiplications  to  process  nq positive  q  values,  and  the 
same  number  plus  an  additional  division  to  process  nq 

negative values. Reducing the number of q causes a speed 
gain, but not proportional one. For example, for L=7, on 
machine configuration 1, the incremental update time goes 

L
nL=10 nL=30 nL=50

conf. 1 conf. 2 conf. 1 conf. 2 conf. 1 conf. 2

4

N
47.3

(1.08)
45.8 *
(27.6)

153
(2.36)

119 *
(24.7)

257
(2.22)

185 *
(11.2)

I 17.4
(0.859)

9.09 *
(13.9)

17.5
(0.565)

13.1 *
(15.0)

17.7
(0.677)

12.1 *
(14.8)

R 2.73 5.04 * 8.74 9.04 * 14.5 15.3 *

7

N
512

(1.89)
366

(4.69)
2000
(4.66)

1425
(8.93)

3520
(5.66)

2489
(14.2)

I 104
(1.04)

73.2
(2.33)

104
(1.04)

73.7
(1.40)

104
(1.12)

74.3
(2.10)

R 4.94 5.00 19.3 19.3 34.0 33.5

10

N
9480
(362)

5190
(24.5)

36700
(1630)

20800
(111)

61500
(2900)

36600
(91.8)

I 2520
(114)

1080
(12.7)

2550
(128)

1080
(20.3)

2540
(127)

1080
(15.0)

R 3.76 4.79 14.4 19.2 24.2 34.0

Legend:
time (dev) Absolute  time  in  microseconds  for  one 

update,  averaged  over  the  whole  batch  of 
runs, with the observed standard deviation.

L Number of levels
nL Size of level L. See section 2.2.
N Non-incremental version
I Incremental version
R Ratio of the mean timings N / I
Conf. 1 & 2 Machine configurations (see text)

These are measurements of the time it takes to process 
a new data value and to remove an old one for the multi-
fractal  analysis  using  the  Daubechies  wavelet  with  6 
coefficients.  All  timings  are  given  in  microseconds, 
rounded to 3 digits. The experiment was repeated on a 
Athlon 1600+/1.4 Ghz system (conf.  1)  and  an Athlon 
3000+/1.8 Ghz (conf. 2), with optimizations turned on in 
each  case.  Results  marked  *  are  less  reliable  due  to 
some measures being below the system timer precision.

Figure 6: Performance measurements



down from 104 to 82 microseconds when considering q=-
5..5 instead of q=-10..10. As a result, this algorithm is well 
suited to estimate large ranges of q values.

All in all, when considering the precision results of the 
previous section, there seems to be little gain in increasing 
the number of levels above some intermediate value.

5 Conclusion

This new algorithm for updating a multi-fractal analysis in 
constant time has the same capacities, inherent precision, 
and properties,  as the method based on discrete wavelet 
transform  presented  in  [5].  However,  it  is  much  more 
efficient, even in its non-incremental form, thanks to the 
pre-computation of different crucial parts. The incremental 
updates add another order of magnitude of performance. 
Optionally  averaging over  all  2L dyadic frames provides 
more  stability  in  the  estimates  for  medium  levels  of 
decomposition.

The incremental  DWT part  of  this  algorithm may in 
itself  have  other  applications  beside  the  estimation  of 
multi-fractal spectra. Both the DWT and the multi-fractal 
parts are fully generic,  they make no assumption on the 
data.

This  algorithm  is  numerical  stable,  precise,  and 
efficient.  It  is  therefore  applicable  to  a  wide  variety  of 
applications requiring real time computations.
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This  project  source  code  is  available  under  the  GNU 
General Public License, v2 or above. Links can be found 
on the author web page http://nicolas.brodu.free.fr.

All  random seeds  and  parameters  used  in  the  expe-
riments  are  included in test  programs provided with the 
source code. The white noise random number generator is 
the Mersenne Twister by Makoto Matsumoto [11],  http:// 
www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html.

The  pink  noise  is  generated  by  the  Voss-McCartney 
algorithm  http://www.firstpr.com  .au/  dsp/pink-noise/  ,  but 
using the Mersenne twister as white noise source. These 
random number generators are provided with the source 
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Appendix 2: Precision experiment results

L=4, nL=10 L=7, nL=30 L=10, nL=50

q h(q) frame 
dev.

h(q) frame 
dev.

h(q) frame 
dev.

1 0.5649 0.0036 0.5143 0.0004 0.5043 0.0015

2 0.5538 0.0034 0.5121 0.0004 0.5036 0.0015

3 0.5423 0.0035 0.5098 0.0004 0.5024 0.0015

4 0.5320 0.0038 0.5074 0.0004 0.5010 0.0015

5 0.5235 0.0041 0.5047 0.0004 0.4994 0.0015

6 0.5168 0.0045 0.5018 0.0005 0.4975 0.0015

7 0.5117 0.0048 0.4988 0.0005 0.4955 0.0015

8 0.5077 0.0051 0.4958 0.0005 0.4933 0.0015

9 0.5046 0.0053 0.4929 0.0006 0.4911 0.0014

10 0.5023 0.0055 0.4901 0.0006 0.4888 0.0014

-1 0.4947 0.1878 0.5214 0.0289 0.5110 0.0022

-2 0.4338 0.4630 0.5217 0.1114 0.5173 0.0048

-3 0.4185 0.5455 0.5233 0.1318 0.5176 0.0054

-4 0.4081 0.5745 0.5241 0.1391 0.5178 0.0056

-5 0.4127 0.5815 0.5248 0.1428 0.5179 0.0057

-6 0.4080 0.5709 0.5250 0.1460 0.5180 0.0057

-7 0.3915 0.5710 0.5278 0.1492 0.5182 0.0058

-8 0.4290 0.5746 0.5295 0.1532 0.5183 0.0058

-9 0.4669 0.5918 0.5140 0.1579 0.5184 0.0058

-10 0.4566 0.6037 0.5179 0.1627 0.5187 0.0058

Results are presented for Brownian motion with incre­
mental updates discarding the old points. The mean over 
all runs frame to frame deviation is shown. The run-to-
run deviation of the h(q) is the same order as in figure 7.

Figure 9: Frame-to-frame deviations

L=4 L=7 L=10

q h(q) dev. h(q) dev. h(q) dev.

1 1.0108 0.0039 1.0106 0.0076 1.0060 0.0236

2 1.0091 0.0039 1.0103 0.0074 1.0031 0.0235

3 1.0083 0.0042 1.0103 0.0078 1.0008 0.0241

4 1.0086 0.0047 1.0105 0.0086 0.9983 0.0251

5 1.0096 0.0052 1.0107 0.0097 0.9954 0.0263

6 1.0112 0.0058 1.0109 0.0109 0.9921 0.0274

7 1.0132 0.0065 1.0110 0.0122 0.9886 0.0284

8 1.0155 0.0072 1.0108 0.0134 0.9850 0.0292

9 1.0179 0.0079 1.0104 0.0146 0.9814 0.0300

10 1.0202 0.0087 1.0098 0.0157 0.9780 0.0305

-1 1.0205 0.1098 1.0171 0.0251 0.9995 0.0342

-2 1.0417 0.2823 1.0289 0.0517 1.0015 0.0450

-3 1.0436 0.3105 1.0310 0.0548 1.0020 0.0467

-4 1.0439 0.3190 1.0315 0.0556 1.0022 0.0474

-5 1.0438 0.3225 1.0317 0.0560 1.0024 0.0477

-6 1.0436 0.3242 1.0318 0.0562 1.0024 0.0480

-7 1.0435 0.3252 1.0318 0.0563 1.0025 0.0481

-8 1.0434 0.3259 1.0318 0.0564 1.0025 0.0482

-9 1.0433 0.3263 1.0317 0.0565 1.0025 0.0483

-10 1.0432 0.3266 1.0317 0.0565 1.0025 0.0483

Results are presented here for integrated pink noise, a 
theoretical mono-fractal with H=1.0. The h(q) values are 
shown  for  different  q,  averaged  over  30  independent 
runs. The run-to-run standard deviation is also shown. L 
stands for the number of levels of decomposition.  The 
number of data nL at the highest level has no influence 
on these results, since all values in the time series are 
kept (the old points are not discarded).

Figure 7: Precision measurements

L=4 L=7 L=10

q |∆| no 
weight

dev. |∆| no 
weight

dev. |∆| no 
weight

dev.

1 0.0025 0.0014 0.0046 0.0036 0.0163 0.0121

2 0.0013 0.0010 0.0047 0.0033 0.0168 0.0116

3 0.0026 0.0015 0.0049 0.0036 0.0175 0.0120

4 0.0040 0.0019 0.0053 0.0040 0.0183 0.0129

5 0.0049 0.0020 0.0057 0.0045 0.0194 0.0143

6 0.0053 0.0021 0.0061 0.0050 0.0212 0.0148

7 0.0054 0.0022 0.0068 0.0053 0.0230 0.0158

8 0.0052 0.0024 0.0077 0.0055 0.0246 0.0170

9 0.0050 0.0024 0.0086 0.0057 0.0263 0.0180

10 0.0048 0.0024 0.0094 0.0062 0.0279 0.0190

-1 0.0747 0.0582 0.0308 0.0263 0.0295 0.0289

-2 0.1841 0.1436 0.0764 0.0612 0.0580 0.0438

-3 0.2018 0.1553 0.0840 0.0660 0.0631 0.0463

-4 0.2072 0.1593 0.0862 0.0678 0.0647 0.0474

-5 0.2096 0.1611 0.0872 0.0688 0.0653 0.0480

-6 0.2108 0.1621 0.0877 0.0693 0.0657 0.0483

-7 0.2116 0.1626 0.0880 0.0697 0.0659 0.0486

-8 0.2121 0.1630 0.0882 0.0697 0.0660 0.0487

-9 0.2125 0.1632 0.0883 0.0701 0.0660 0.0488

-10 0.2128 0.1633 0.0884 0.0703 0.0661 0.0489

These results are produced by the same experiment as 
described in Figure 7. |∆| means the absolute value of 
the  observed  difference  between  the  result  with  the 
correct exponential fit weighting scheme (Figure 7), and 
the result with an unweighted least square fitting.

Figure 8: Influence of the weighting scheme
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